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An algorithm for determining crystal structures from diffraction data is

described which does not rely on the usual reciprocal-space formulations of

atomicity. The new algorithm implements atomicity constraints in real space, as

well as intensity constraints in reciprocal space, by projections that restore each

constraint with the minimal modi®cation of the scattering density. To recover the

true density, the two projections are combined into a single operation, the

difference map, which is iterated until the magnitude of the density modi®cation

becomes acceptably small. The resulting density, when acted upon by a single

additional operation, is by construction a density that satis®es both intensity and

atomicity constraints. Numerical experiments have yielded solutions for atomic

resolution X-ray data sets with over 400 non-hydrogen atoms, as well as for

neutron data, where positivity of the density cannot be invoked.

1. Introduction

This year marks the semi-centennial of the realization by

crystallographers that diffraction intensities possess suf®cient

information to reconstruct an atomistic structure (Sayre,

2002). The simple fact that the scattering arises from a known

number of nearly point-like entities, while clearly not as

intricate in content as the body of collected intensities itself,

constitutes a signi®cant piece of information as well. The ®rst

important steps in utilizing atomicity in structure determina-

tion were taken by Sayre (1952) in his celebrated equation,

and later by Hauptman & Karle (1953) in their probabilistic

analysis of structure factors. These pioneering methods were

based in reciprocal space and established a framework for all

subsequent work on the crystallographic phase problem.

What is remarkable in the ®fty-year history of direct

methods is that crystallographers have been slow to exploit

the ef®ciency of the fast Fourier transform (FFT) to impose

atomicity in real space, the space where it is most naturally

expressed. In the ®rst application of the FFT to phase exten-

sion and re®nement, Barrett & Zwick (1971) viewed the

transformation to real space primarily as an expedient for

carrying out the convolution in Sayre's equation (and related

tangent formula). These authors also made the observation

that, with easy access to the real-space density, a variety of

phase re®nements is available that are outside the scope of the

reciprocal-space approach. Density modi®cation, as these

real-space-based methods became known, fell short of atom-

icity in that only global characteristics of the density, such as

non-negativity, were addressed. True atomicity constraints in

real space ®rst appeared in the SnB program (Miller et al.,

1994; Weeks & Miller, 1999), and were later adopted by

SHELXD (Sheldrick, 1997, 1998). However, even these

programs continue to rely heavily on the traditional reci-

procal-space approach to atomicity

The aim of the work detailed below was to develop a

practical phase-determination algorithm for crystal structures

which imposes atomicity entirely within real space. A key

component of the algorithm is an iterative operation (differ-

ence map) that was discovered by deconstructing the most

successful algorithm (hybrid input±output) for the phase

problem in optics (Fienup, 1982) and re-expressing it in terms

having wider applicability (Elser, 2003a). Experiments with

the atom_retriever implementation of the new algorithm on a

variety of test structures demonstrate both its robustness and

its speed. The ¯exibility of the new approach, with respect to

the kinds of constraints that can be imposed in real space,

raises hopes of an ab initio solver not limited by atomic

resolution data.

2. Constraints and projections

The choice of the algorithm's fundamental variables is largely

motivated by the mathematical structure of the iterative step

(x3). In particular, the object that is iterated should have the

property that it can be added, in the sense of a linear vector

space, to other objects, and that there is a natural expression

for the distance between objects. The set of structure factors,

with magnitudes ®xed and phases variable, are not good

candidates in this respect. A better choice of object, and the

one we adopt, is the real-space scattering density sampled on a

®nite regular grid. The relationship between real-space

sampling and reciprocal-space sampling on the reciprocal

lattice is quite direct, as illustrated by the two-dimensional

example in Fig. 1. Shown on the left (Fig. 1a) is the actual
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scattering density within one unit cell. The structure factors of

the corresponding crystal decay with scattering angle so that

only a limited range about the origin in reciprocal space is

measured. By padding with zeros at the corners, the measured

structure factors can be ®t into a ®nite rectangular grid as

shown in the middle ®gure (Fig. 1b). Given phases for the

structure factors on the bounded reciprocal-space grid, the

discrete Fourier transform of the resulting complex structure

factors then gives the discretely sampled real-space density

shown on the right (Fig. 1c). Conversely, given a scattering

density on the real-space grid (Fig. 1c), the inverse Fourier

transform gives the complex structure factors on the bounded

reciprocal-space grid, although with magnitudes not necessa-

rily matching the measurements (Fig. 1b).

2.1. Intensity constraints

A valid density in real space must ®rst of all have the

property that the inverse Fourier transform gives the

measured structure-factor magnitudes. If not, one can seek the

minimal density modi®cation that brings the actual magni-

tudes into agreement with the measured ones. Using the

symbol � to represent the vector of densities on the real-space

grid, the mathematical operation which accomplishes this is

the projection �F���. The projected density is uniquely

de®ned by the properties that its Fourier transform has the

correct (given) magnitudes and the distance k�F��� ÿ �k is

minimized. It is convenient to use the Euclidean distance since

it is preserved by Fourier transformation:

k�k2 �P
r

�2
r �

P
q

j ~�qj2 � k ~�k2: �1�

In (1), the indices r and q denote grid points in real space and

reciprocal space, respectively, and the complex structure

factors ~�q are related to the real-space density by

~�q � �F����q � �1=M1=2�P
r

exp�2�iq � r��r; �2�

where M is the total number of grid points (in real or recip-

rocal space). Using the unit cell's fractional coordinates

�x; y; z� to label r and the Miller indices �h; k; l� for q, we have

q � r � hx� ky� lz. The invariance of the distance (1) makes

it possible to achieve the distance-minimizing property of the

projection �F very easily in reciprocal space. Speci®cally, for

every complex structure factor ~�q, we wish to ®nd the nearest

point in the complex plane lying on a circle corresponding

to the measured magnitude Fq. The required projection is

therefore accomplished by simply rescaling the magnitude of

the structure factor:

e�F� ~��
h i

q
� Fq

j ~�qj
~�q: �3�

A vanishing denominator in (3) is not a problem since it

represents a set of measure zero if one neglects extinctions

(where Fq also vanishes). The projection in real space is

expressed symbolically as

�F � Fÿ1 e�F F : �4�
When the Fourier transforms are implemented with the FFT,

the computational cost of projecting a density on the intensity

constraints grows as M log M.

A practical algorithm using the Fourier intensity projection

�F must address the fact that not all the structure factors on

the reciprocal-space grid will be measured. In addition to F0,

measurements near q � 0 will frequently be absent or very

unreliable, particularly for large-unit-cell crystals. At the other

extreme, structure factors in the corners of the reciprocal-

space grid (Fig. 1b) will be absent because data are normally

collected within a spherical domain about the origin. The

absent structure factors can be treated in a uniform way by

applying bound constraints rather than value constraints. A

bound j ~�qj<FB
q in reciprocal space is geometrically a disc, and

the projection that restores the bound constraint either leaves

the structure factor unchanged, when it is inside the disc, or

moves it to the nearest point on the circumference, when it lies

outside. Using D to denote the set of grid points q for which

Table 1
Test structures solved by atom_retriever.

Structure Reference Data Re¯ections N Group dmin Completeness b Grid � Iterations hcos �'i
Montebrasite (a) Neutron 1024 20 P1² 0.66 85% 2.5 22� 24� 22 0.7 20 0.76
TEX nitramine (b) X-ray 1911 36 P1² 0.76 91% 6.6 20� 22� 24 0.7 15 0.77
Amphiphilic pyrrole (c) X-ray 4238 48 P1² 0.81 100% 11.0 14� 26� 52 0.7 25 0.76
Punctaporonin D (d) X-ray 3764 54 P1 0.85 100% 10.4 22� 26� 30 0.7 75 0.72
�-helix and 310=�-helix (e) X-ray 7489 148 P1 0.96 100% 7.5 22� 36� 42 0.7 1100 0.71
Triphenylphosphine ( f ) X-ray 9982 152 P1² 0.84 100% 2.9 28� 36� 42 0.7 25 0.79
�-helical bundle (g) X-ray 23681 479 P1 0.90 86% 10.1 40� 46� 60 0.7 450000 0.75

References: (a) Groat et al. (2002); (b) Karaghiosoff et al. (2002); (c) Ramos Silva et al. (2002); (d) Poyser et al. (1986); (e) Karle et al. (1989); ( f ) Kooijman et al. (1998); (g) PriveÂ et al.
(1999). ² The actual structure has symmetry P�1, but was treated as P1 with twice as many atoms.

Figure 1
Discrete sampling of a scattering density in two dimensions. (a) Density
within one unit cell. (b) Structure-factor magnitudes for the density in (a),
sampled over a range with h2 � k2 < 102. (c) Discrete sampling of (a)
obtained by applying the discrete Fourier transform to the complex
structure factors [(b) combined with phases].



measured values Fq exist, and assuming bounds FB
q can be

found for all others, equation (3) should be replaced by

e�F� ~��
h i

q
�
�Fq=j ~�qj� ~�q for q 2 D
�FB

q =j ~�qj� ~�q for q =2 D and j ~�qj>FB
q

~�q for q =2 D and j ~�qj<FB
q .

8><>: �5�

At large q, one can obtain reliable bounds by extrapolating the

measured structure factors on a Wilson plot (see x4.2). Near

the origin, where usually only few structure factors are absent,

an in®nite bound is usually adequate and avoids a more

dif®cult estimation problem. An example of a reciprocal-space

grid, showing structure-factor values and bounds taken from

data for a 148-atom peptide structure (Table 1, reference e), is

shown in Fig. 2.

2.2. Atomicity constraints

Atomicity can be imposed as a support constraint, where

the support S of the density is the subset of real-space grid

points r such that �r 6� 0. However, in contrast to phase

retrieval with nonperiodic objects, where S is known or can be

bounded, in crystallography one only knows that S has atomic

characteristics. The simplest de®nition of an atomic support is

the union of a known number of compact subsets of grid

points, each representing one atom, and having arbitrary

locations within the unit cell. Given a particular atomic

support S, the projection �S of an arbitrary density � to a

minimally modi®ed density having support S is simply

�S���
� �

r
� �r for r 2 S

0 otherwise.

n
�6�

If A denotes the collection of all atomic supports (differing in

atom locations), then atomicity projection is de®ned by

�A��� � �S0 ���; �7�
where S0 2 A is the atomic support that minimizes

k�S��� ÿ �k over all S 2 A. While (6) can be computed

quickly, an exhaustive search over all atomic supports in A to

®nd (7) may be prohibitive. We therefore adopt a heuristic

(described below) that quickly ®nds an atomic support that is

usually optimal.

In describing the precise projection operation, we distin-

guish two cases: atomicity projection for positive atoms (A+),

and atomicity projection for atoms of arbitrary sign (A). The

former is used with X-ray diffraction data, the latter with

neutron diffraction data when atomic species with both signs

of scattering length are present. In both cases, we assume the

number of atoms per unit cell N is known. In the case of X-ray

diffraction, this will usually not include H atoms.

The ®rst step in computing the projection �A���� is to sort

the density values on the real-space grid. Then, beginning with

the largest density, grid points with the property of being a

local maximum are identi®ed. A local maximum is de®ned by

having a larger density value than any of its 26 neighboring

grid points. Each time a local maximum is found, the 27

density values (maximum + neighbors) are copied, after

positivity projection, onto a real-space output grid that was

initially set to zero. Positivity projection, given by

�����
� �

r
� �r if �r > 0

0 otherwise,

�
�8�

is the minimal modi®cation that restores the positivity of

atoms. The search through the sorted densities terminates

when N local maxima have been identi®ed and copied (posi-

tively) into the output grid. A graphical example of �A� in

two dimensions (and eight neighbors) is shown in Fig. 3(b).

Two modi®cations are required to compute the projection

to atoms of arbitrary sign, �A���. To identify large peaks of

arbitrary sign, the densities on the real-space grid are sorted

by absolute value. Then, densities in the sorted list are iden-

ti®ed as local maxima or minima, depending on their sign.

Positivity projection is still applied to local maxima, whereas

local minima are subjected to its counterpart: negativity

projection. Fig. 3(c) shows the action of �A. The computa-

tional cost of both types of atomicity projection is dominated

by the sort of M densities on the real-space grid. Using the

quicksort algorithm, this cost grows as M log M, proportional

to the cost of Fourier intensity projection (x2.1).

The atomicity projections described require data with

suf®cient resolution. From the conventional de®nition

resolution � dmin � 2�=Qmax; �9�
where Q � �2�=��2 sin � is the magnitude of the physical

scattering wavevector, one can obtain in physical units the

real-space grid spacing. The relationship between Q and the

vector of Miller indices q is given by

�Q=2��2 � q �M � q! �h=a�2 � �k=b�2 � �l=c�2; �10�
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Figure 2
Structure factors in the plane h � 0 for a 148-atom peptide structure
(Table 1, reference e): (a) measured values; (b) bounds.

Figure 3
Atomicity projections of a two-dimensional density. (a) Density � within
one unit cell. (b) �A����, the density closest to (a) having ®ve positive
atoms. (c) �A���, same as (b) but with the signs of the atoms unspeci®ed.
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where the matrix M is a metric constructed from the unit-cell

parameters, and the last expression gives the explicit form for

an orthorhombic cell with dimensions a, b and c. For the

ranges on the Miller indices to be consistent with a Qmax, (10)

shows in particular that

jhj< a�Qmax=2�� � a=dmin: �11�

The number of reciprocal-space grid points for the index h is

therefore 2�a=dmin�, and since the real-space grid has the same

number of points and has physical dimension a, the grid

spacing is dmin=2.

According to our projection heuristic, a pair of local

extrema (of the same sign) can never be neighbors on the grid,

but must be separated by at least two grid spacings in one of

the three dimensions. Supposing for simplicity that the unit

cell is nearly orthorhombic, the strongest bound on the rela-

tive displacement of a pair of atom centers arises when the

latter is along the body diagonal of the grid. In that case, the

displacement must exceed �2; 2; 2� in grid units, otherwise the

corresponding local extrema might be neighbors on the grid.

The minimum separation of atomic centers must therefore

satisfy rmin > 2� 31=2 in grid units, or rmin > 31=2dmin. Since for

organic structures rmin � 1:4 AÊ (neglecting H atoms), this

statement implies dmin < 0:81 AÊ . On the other hand, this

bound is derived from the worst-case placement (relative to

the grid) of two atoms in a structure of many atoms. Atom

pairs displaced along a grid axis, for example, yield the more

generous bound dmin < rmin. It is therefore not surprising that

this form of atomicity projection has succeeded in solving

organic structures at resolutions exceeding 0.81 AÊ (Table 1).

3. The difference map

Given two sets of constraints on the density, implemented

respectively by projections �1 and �2, the difference map is

an iterative procedure for obtaining a solution density �sol that

satis®es both constraints, speci®cally:

�1��sol� � �sol � �2��sol�: �12�
Although our main interest is the projections �1 � �A (or

�A�) and �2 � �F , we begin with a review of the solution

method for a general pair of projections (Elser, 2003a).

3.1. Fixed points and solutions

Starting with an arbitrary initial density ��0�, a sequence of

iterates ��n� � Dn���0�� is generated by repeated application

of the difference map:

D: � 7! �� ���1 � f2 ÿ�2 � f1����: �13�
Each of the projections in (13) is composed with a map

fi � �1� 
i��i ÿ 
i �i � 1; 2�; �14�
� 6� 0, 
1 and 
2 are real parameters. The difference map has

two key properties, the ®rst being that a solution, as de®ned by

(12), exists if and only if the map has a ®xed point, �� � D����.

To see this, note that the difference in (13) vanishes at a ®xed

point, hence,

�1 � f2���� � �2 � f1���� � �0: �15�
Applying either of the projections to (15) and using the

property �i ��i � �i, we obtain

�1��0� � �0 � �2��0�; �16�
thus identifying �0 with �sol. Conversely, if �sol exists, the set of

®xed points is nonempty since it is easily veri®ed that

D��sol� � �sol.

The ®xed-point property of the difference map makes no

reference to the detailed forms of the maps fi. These maps are

key to the second property: the attractive nature of the ®xed

points. In an iterative solution method, a ®xed point is useless

unless it is attractive; moreover, the greater the basin of

attraction, the more effective is the method. Replacing the fi

by identity maps, for example, creates unstable (repulsive)

directions in a ®xed point's local behavior (Elser, 2003a),

effectively reducing to zero the probability of arriving at the

®xed point. The chosen form (14) of the maps fi is the simplest,

involving just the projections, that for suitable values of the

parameters 
i renders the ®xed points of the difference map

attractive.

Fixed points of the difference map should not be confused

with the solution. The former are not unique, comprising in

fact a submanifold in the space of densities; formally, the

submanifold of ®xed points is given by the intersection of

inverse images:

��1 � f2�ÿ1��sol� \ ��2 � f1�ÿ1��sol�: �17�
Because of the strongly mixing property (see x3.4), it makes no

sense to expend effort on the construction of the initial iterate,

��0�. All results presented here constructed ��0� from the

output of a simple random-number generator. During the

course of iterating the difference map, the convergence to a

®xed point is assessed by the norm of the difference

"n � k��1 � f2 ÿ�2 � f1����n��k: �18�
When "n becomes acceptably small, �sol is obtained, as in (15),

by applying �1 � f2 (or �2 � f1) to the estimate �� � ��n�.

3.2. Parameter values

For a particular �, interpreted as a step size, the values of


1 and 
2 are selected to optimize the convergence at ®xed

points. The earliest analysis of the difference map (Elser,

2003a) assumed local orthogonality of the two constraint

subspaces and found


1 � ÿ1=� �19�

2 � 1=�: �20�

Subsequent work (Elser, 2003b) considered an average-case

analysis for particular kinds of constraints, including atomicity,

and found optimal parameters (1! S, 2! F)




S � ÿ1=� �21�

F �

1� tF�1ÿ ��
�

; �22�

where tF � 0:5 is the fraction of reciprocal-space grid points

with known (non-negligible) structure factors, and the

projection S (support) corresponds to atomicity (A or A+).

However, because the typical step size is � � 0:7, the small

numerical difference between (20) and (22) has not led to a

signi®cant change in performance of the algorithm. All

experiments quoted in this work used the simpler expression

(20).

Since there is as yet no theory for determining the optimal

value of � for any particular application, � remains the single

parameter of the algorithm that must be optimized empiri-

cally. Average solution times, measured in terms of difference-

map iterations, are shown in Fig. 4 as a function of � for a 148-

atom peptide structure (Table 1, reference e). Systematic

trends in optimal � values with data resolution and

M=N � gridsize=atoms have not been performed, although it

appears that optimal values fall in the range shown

(0:4 � � � 0:8).

Some algorithms (SnB, SHELXD) treat the number of non-

H atoms as a parameter, with N deliberately chosen signi®-

cantly smaller than the best estimate of the actual number to

improve performance. Various strategies for selecting atoms

from the computed density are compared for the 148-atom

peptide structure in the review by Sheldrick et al. (2001).

Preliminary studies with the difference-map algorithm on the

same structure showed only a very weak variation in the

average number of iterations when N was varied by�8%. This

result indicates that, while N is not a useful parameter, the

algorithm can tolerate inevitable uncertainties in the actual

numbers of atoms. From a logical viewpoint, choosing N larger

than the actual number of atoms is always valid: the atomicity

constraint has simply been weakened.

3.3. Convergence with imperfect data

When formulated in terms of constraints, the uniqueness of

solutions to the phase problem requires an overconstrained

situation. Considered geometrically, the two sets of constraints

(say intensity and atomicity) are individually submanifolds in

the space of densities with relatively low dimensionality. More

speci®cally, in the overconstrained case, the sum of the

dimensionalities is less than that of the ambient space (M),

such that the intersection of generic submanifolds, of the same

dimensions, would be empty (rather than a submanifold of

positive dimension). The constraint submanifolds in a well

posed phase problem, given perfect data, are nongeneric in

the sense that a solution is known to exist or, equivalently, the

submanifolds have a nonempty intersection in spite of their

low dimensionality. The ®ne tuning implicit in the intensity

data (say) required to achieve an intersection, or true solution,

is upset by practically any departures from ideality. Chief

among these in the crystallographic phase problem are

statistical errors in the intensity measurements and the neglect

of hydrogen atoms in the treatment of atomicity. Faced with

these realities, one must abandon the hope of ®nding a solu-

tion in the strict sense.

Although the constraint submanifolds are not expected to

perfectly intersect with realistic noisy data, we expect them to

have a small separation (in the space of densities) in the

vicinity of the true density. The convergence estimate " [see

(18)] can be interpreted as the currently achieved distance

between constraint submanifolds, and solutions should be

identi®ed not by its vanishing but by its value dropping a

signi®cant amount. Plots of "n as a function of iteration n are

contrasted in Fig. 5 for synthetically generated (top) and

experimental (bottom) data. Experimental data for the 148-

atom peptide structure (Table 1, reference e) was used for the

imperfect data set, and synthetic data for a 148-equal-atom

structure having the same M=N ratio was used to simulate

perfect data. To ensure perfect compliance with the atomicity

constraint, the Gaussian atoms used to create the perfect data
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Figure 4
Average number of difference-map iterations required to solve a 148-
atom structure (Table 1, reference e) for the parameter range
0:4 � � � 0:8 (over 200 solutions per point).

Figure 5
Evolution of the error estimate " with difference-map iteration for two
148-atom data sets: (top) synthetic data for ideal 3� 3� 3 atoms and no
H atoms; (bottom) experimental data (Table 1, reference e).



research papers

206 Veit Elser � Solution of the phase problem Acta Cryst. (2003). A59, 201±209

were given supports on 3� 3� 3 subsets of the real-space

grid; atom centers, given by a random-number generator,

avoided the minimum separation rmin � �12�1=2 (grid units).

The sharp drop in " displayed by the experimental data, and

observed in all difference-map solutions reported here,

demonstrates the viability of " as a solution criterion even in

the case of imperfect data.

With imperfect data, it appears that the minimum " occurs

shortly after the initial drop, and is not surpassed subse-

quently. As a best estimate of a ®xed-point density, we

therefore take the difference map iterate at the " minimum;

the corresponding solution estimate is found by applying

�F � fA� or (�F � fA). Using this procedure on the known 148-

atom peptide structure gave a mean ®gure of merit

hcos �'i � 0:71 when averaged over all re¯ections in the data.

The overconstrained nature of the problem solved by the

difference map can be appreciated by closer examination of

the solution found with perfect data. Shortly after the sharp

drop in " when the solution is ®rst found, " decays mono-

tonically to zero. This behavior implies that the structure

factors of the density at large angles, which were provided only

as bounds to the algorithm, are in fact being extrapolated to

their true values by the iterative process (as was con®rmed by

direct examination of the solution's structure factors).

3.4. The solution process

The problem of ®nding a point in Euclidean space that

satis®es a number of constraints, or showing that no such point

exists, is known as a feasibility problem in the optimization

literature. Theoretical studies have mostly focused on the case

of convex constraint subspaces, where monotonicity of

convergence can usually be proven for a variety of iterative

methods. However, since both sets of constraints in the crys-

tallographic phase problem (Fourier intensity and atomicity)

are nonconvex, no rigorous results are available. The local

analysis of the difference map, quoted above, only establishes

the favorable ®xed-point characteristics of the map, and

provides no estimate on the number of iterations required to

enter a ®xed point's sphere of in¯uence.

A dynamical systems perspective, combined with empirical

data, provides a useful, though nonrigorous, picture for the

difference map's mode of operation. Some salient features of

the evolution of the density are illustrated in Fig. 6. Relatively

rapid changes occur on the scale of very few iterations, and

continue in an apparent steady state until quite abruptly the

®xed point is encountered. During the long period of rapid

changes there is no obvious progress toward the solution and

the dynamics is well characterized as chaotic in the strongly

mixing regime, where iterates settle into a stationary prob-

ability distribution very quickly. The basin of attraction of the

map's ®xed points has some overlap with this probability

distribution, the magnitude of which determines the mean

number of iterations required to arrive at the solution when

averaged over starting points.

Taking this interpretation as a hypothesis, it can be tested by

compiling a distribution of solution times for a given problem

instance, as measured by the number of iterations before the

sharp drop in " occurs (Fig. 5). If the strongly mixing property

holds, then iterates are effectively subject to a probability of

arriving at the attractive basin of a ®xed point that is constant

in time, and hence solution times will have an exponential

distribution. An experiment comprising 3800 trials for the 148-

atom peptide structure (all with � � 0:7) showed exactly this

distribution. A solution was found in each trial, the longest

requiring 7760 iterations, and the mean for all trials was 1100

iterations. The distribution of iterations, normalized relative to

the mean, is plotted in Fig. 7 and compared with the expo-

nential distribution. Overall the agreement is very good: the

slight deviation at small iterations can be explained by a

combination of the ®xed (but small) number of iterations

required to converge, ®rst to the stationary probability

distribution, then, after arriving at the attractive basin, to the

®xed point.

The observed distribution of solution times greatly simpli-

®es the solution protocol and eliminates yet another potential

parameter: the bound on the number of iterations. Iteration

bounds, typically some multiple of the number of atoms N, are

imposed by SnB and SHELXD and results are quoted in

terms of `success rates'. Given an exponential distribution of

solution times (Fig. 7), such a bound for the difference-map

algorithm is arbitrary since it will have no effect on the

number of solutions found per total iterations performed on

all trials. Expressed in more direct terms: the performance of

the algorithm is practically unaffected by random restarts, and

hence there is no degradation of performance when iterations

Figure 6
Detailed behavior of the densities in the plane x � 0 for the solution
shown at the top of Fig. 5: (a), (b) consecutive densities ��100� and
��101�, (c) ®xed-point density �� � ��3000�, (d) solution density
�sol � �F � fA�����.



are allowed to continue inde®nitely. It is possible, however,

that this conclusion will have to be modi®ed if further

experimentation with the difference map, say with small �,

®nds a nonexponential distribution of solution times.

4. Studies of test structures

4.1. The atom_retriever computer program

A preliminary implementation of the difference-map

algorithm for crystallographic applications exists as the C-

language program atom_retriever. The software in its current

form is best characterized as a library of general-purpose

subroutines that manipulate data in the uniform format of

discretely sampled densities. At the lowest level are subrou-

tines for performing a variety of projections, Fourier intensity

and atomicity projection being of primary interest to crystal-

lographers. The next level of subroutines combine the chosen

projections into the difference map. Finally, at the highest

level is a collection of drivers and translators that provide

options for monitoring and terminating iterations, as well as

converting input structure-factor data ®les into the rectangular

arrays used by the algorithm. With this degree of transparency,

it is hoped that users will experiment with innovations at the

level of the projections, which are at the heart of the algor-

ithm's success.

4.2. Space groups and structure-factor input

The primary input to atom_retriever is the rectangular

array, containing structure-factor values and bounds (Fig. 2),

and used by the Fourier intensity projection subroutine.

Software for applying symmetry elements to structure-factor

data in the construction of these arrays is still being developed,

limiting applications to structures with triclinic (P1 and P�1)

space groups. In the future, the complete set of space groups

will be implemented by preparing the initial density ��0� with

a projection that recognizes in reciprocal space the phase

relationships between structure factors for the speci®ed group;

no changes are necessary in the atom_retriever program, since,

apart from numerical rounding effects, the difference map

preserves the symmetry of the density. Since symmetry

projection software is also under development, the P1 struc-

tures studied to date were treated as P1, with twice the true

number of symmetry-inequivalent atoms.

The truncation of the individual atomic supports during

atomicity projection to a 3� 3� 3 array of grid points was

shown by Elser (2003a) to be optimal when the corresponding

Gaussian atom has a mean square displacement hu2
xi � 0:55 in

grid units, or

B=8�2 � hu2
xi � 0:14d2

min; �23�
where B is an effective isotropic temperature factor. De®ning

a dimensionless temperature factor by

b � B=d2
min; �24�

one ®nds that typical X-ray and neutron data sets (see Table 1)

satisfy b< bopt � 11. This means that 3� 3� 3 is usually a

generous support, perhaps even suf®cient to accommodate

hydrogen neighbors.

An effective temperature factor B, which combines the

effects of atomic size, thermal vibration and certain kinds of

static disorder, is estimated from the data by making a linear

least-squares ®t of pairs fQ2; log jFQj2g to the form

log jFQj2 � Aÿ 1
2B�Q=2��2; �25�

for measurements in a restricted range Q>Q0, where typi-

cally 2�=Q0 � 1:2 AÊ . At large spatial frequencies, the struc-

ture factors of centrosymmetric and non-centrosymmetric

structures are well modeled as, respectively, real and complex

Gaussian random variables, with distributions of intensities at

wavevector Q given by (Giacovazzo, 1998)

PQ�I� dI � exp�ÿ 1
2 I=hIQi� dI=�2�hIQiI�1=2 (centric)

exp�ÿI=hIQi� dI=hIQi (acentric).

�
�26�

Since a least-squares ®t applied to (25) gives a formula for the

average of log IQ, the distributions (26) lead to the result

Aÿ 1
2B�Q=2��2 � log hIQi ÿ 
 ÿ log 2 (centric)

log hIQi ÿ 
 (acentric),

�
�27�

where 
 is Euler's constant.

The probability distributions (26), with hIQi determined by

the least-squares ®t and (27), can now be used to determine

bounds on the magnitudes of unmeasured structure factors

with Q>Q0, the bulk being in the corners of the reciprocal-

space grid where Q> 2�=dmin. If M0 is the number of such

(symmetry-inequivalent) structure factors, then 1=M0 is an

acceptable probability for an actual intensity to exceed the

bound. Equating this with the probability I> �FB
Q�2 computed

using (26) gives

FB
Q � �2hIQi�1=2 erfcÿ1�1=M0� (centric)

�hIQi log M0�1=2 (acentric).

�
�28�

There are far fewer unmeasured structure factors with Q<Q0,

and the bound FB
Q � 1 was used for these in all the studies

reported here.
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Figure 7
Distribution of difference-map solution times (iterations) for the 148-
atom peptide structure and � � 0:7. Solution times on the abscissa are
normalized by the mean number of iterations, 1100. The curve shows the
exponential distribution with mean unity, predicted by the strongly
mixing hypothesis of difference map dynamics.
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4.3. Discussion of tests

The results of a selection of tests of the atom_retriever

program are summarized in Table 1. In each test, the entire

available set of experimental structure factors was used, with

missing data replaced by bounds in the manner described

above; the grid dimensions correspond to �2jhjmax � 2� �
�2jkjmax � 2� � �2jljmax � 2�. No effort was made to individu-

ally optimize performance with respect to �; the value chosen,

� � 0:7, is near the minimum in the average number of

iterations for the 148-atom peptide structure (see Fig. 4).

Mean ®gures of merit hcos �'i for the P1 structures were

determined relative to calculated phases. For the P�1 struc-

tures, where calculated phases were not available, an internal

®gure of merit was determined by treating the structures as P1

(with twice as many atoms) and taking the nearest set of

centric phases as the true phases. When the number of itera-

tions required by the algorithm has a broad distribution (see

Fig. 7), the average number is quoted.

Atomicity projection for positive atoms (�A�) was used in

all the X-ray data sets; the neutron data set for the mineral

montebrasite provided the sole application of the projection

to atoms of arbitrary sign, �A. Nuclei with negative scattering

length, such as Li, show up as light contrast in a ®eld of dark

atoms in plots of the scattering density �sol. Fig. 8 shows the

scattering density in one layer of the montebrasite solution.

The small number of iterations required to ®nd the solution is

typical of few-atom structures, where the error diagnostic (18)

decreases almost monotonically with iteration (Fig. 8). When

appropriately translated, the scattering density was nearly

centrosymmetric, the resulting internal ®gure of merit being

signi®cantly larger than what would be obtained from random

phases: hcos �'irand � 2=� � 0:64.

Rapid solutions with a near monotonic error decay were

also observed for the other few-atom structures: nitramine,

pyrrole, punctaporonin and triphenylphosphine. The nitr-

amine and pyrrole structures were selected for their high

density and cell aspect ratios, respectively. These character-

istics had no noticeable effects on the algorithm's perform-

ance. Triphenylphosphine, interestingly, has more atoms

(when treated as P1) than the 148-atom peptide structure,

which requires many more iterations. Data resolution is not

the cause of this anomaly, as was con®rmed by truncating the

triphenylphosphine data to the same 0.96 AÊ resolution as the

peptide: the solution was again found in only 25 iterations. A

more likely cause is the presence of a moderately heavy P

atom in each of the eight triphenylphosphine molecules of the

structure, in contrast to the near equality of the non-H atoms

of the peptide. Arbitrary atomic charges are trivially accom-

modated by the form of atomicity projection used by

atom_retriever. A comparably non-speci®c atomicity was

achieved relatively late in the development of the reciprocal-

space-based framework (Hauptman, 1976; Rothbauer, 2000).

It is premature to assess the algorithm's prospects in solving

large structures from atomic resolution data. The average

solution time for the 148-atom peptide was 35 s on a 2 GHz

Pentium 4 (single processor), not far behind SnB2.2 (30 s) and

SHELXD (11 s). More critical in evaluating performance is

the growth in the average number of iterations with structure

size. The largest structure attempted, a synthetic �-helical

bundle, required nearly half a million iterations per solution

(about 30 h). Fig. 9 shows the error estimate for a typical run,

together with electron-density contours obtained directly from

the discretely sampled density �sol. The single noticeably larger

peak in the density was identi®ed with the chloride ion in the

structure. This synthetic peptide differs from the smaller

structures in that the number of ordered non-H atomic sites

(N) is not known a priori because of the solvent contribution.

The results quoted all used N � 479, the number of non-H

atoms discovered in the original re®nement (PriveÂ et al., 1999),

but the structure was also solved with N as small as 440.

Figure 8
atom_retriever solution for the neutron data set of the mineral
montebrasite (Table 1); (left) near-monotonic decrease of the error with
iteration, (right) scattering density �sol in a plane of the structure showing
an atom (Li) with negative scattering length (light contrast).

Figure 9
atom_retriever solution of the synthetic �-helical bundle (Table 1); (top)
evolution of the error estimate, (bottom) electron-density contours in a
plane containing the chloride ion (top, left of center).



5. Conclusions

The crystallographic phase problem consists of two logically

distinct, though technically coupled, parts. Using the terms

`needles' for solutions and `hay' for non-solutions, these parts

are: (i) distinguishing needles from hay, and (ii) ®nding the

proverbial needle in a haystack. As this work hopefully

demonstrates, it is quite straightforward to recognize needles

when presented with one: one only requires projections that

act trivially (with negligible change) when operating on an

object (i.e. scattering density) that satis®es all the known

constraints (Fourier intensity, atomicity). If the constraints are

too weak, as in a low-resolution data set, the phase problem

may not be soluble in principle, because needles cannot be

distinguished from the hay. On the other hand, even for low-

resolution data, it is known (Podjarny et al., 1987) that in

certain circumstances needles can still be recognized. A

properly phased protein crystal, for example, will often have a

well de®ned solvent region and a characteristic histogram of

density values (possibly at multiple length scales) within the

body of the molecule, even when individual atoms are not

resolved. If a projection (minimal density modi®cation) can be

constructed that applies in this more general setting, the ®rst

part of the phase problem can be said to be solved.

The difference map solves the second part of the phase

problem by providing a uniform scheme for combining the

applicable projections into an algorithm that ®nds the needle.

Its eventual success is practically guaranteed if the corre-

sponding constraints are strong enough to make needles

distinct from hay. Perhaps most remarkable of all is the

empirical fact that needles can be found in a reasonable time

at all. Though the attractive basins of the difference map's

®xed points are, by proper choice of parameters, tuned to be as

large as possible (Elser, 2003a,b), this local optimization

cannot predict the average solution time. With more experi-

ence, we anticipate a body of empirical relationships between

average solution times and characteristics of the data that can

®ll this gap. Some progress in this direction was recently

achieved (Elser, 2003c) in a highly idealized version of the

phase problem (Zwick et al., 1996), where the discretely

sampled (one-dimensional) density is known to be two-valued

(a binary sequence).
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